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ABSTRACT

Intense tropical cyclones (TCs) generally produce a cloud-free center with calm winds, called the eye. The

Automated Rotational Center Hurricane Eye Retrieval (ARCHER) algorithm is used to analyze Hurricane

Satellite (HURSAT) B1 infrared satellite imagery data for storms occurring globally from 1982 to 2015.

HURSATB1 data provide 3-hourly observations of TCs. The result is a 34-yr climatology of eye location and

size. During that time period, eyes are identified in about 13% of all infrared images and slightly more than

half of all storms produced an eye. Those that produce an eye have (on average) 30 h of eye scenes. Hurricane

Ioke (1992) had the most eye images (98, which is 12 complete days with an eye). The median wind speed of a

system with an eye is 97 kt (50m s21) [cf. 35 kt (18m s21) for those without an eye]. Eyes are much more

frequent in the Northern Hemisphere (particularly in the western Pacific) but eyes are larger in the Southern

Hemisphere. The regions where eyes occur are expanding poleward, thus expanding the area at risk of TC-related

damage. Also, eye scene occurrence can provide an objective measure of TC activity in place of those based on

maximum wind speeds, which can be affected by available observations and forecast agency practices.

1. Introduction

Tropical cyclones (TCs) are some of themost destructive

storms, yet at their core they are a paradox.Amidst the fury

of hurricane-force winds, torrential rains, and storm surge

flooding, they have a calm center with often clear skies: the

eye of the storm. While much has been written about eye

development and formation (e.g., Abdullah 1954; Smith

1980; Vigh et al. 2012; Willoughby et al. 1982), structure

(e.g., Kossin and Schubert 2004; Schubert et al. 2007; Shapiro

and Willoughby 1982), thermodynamics (Willoughby 1998),

and life cycle (e.g., Malkus 1958; Sitkowski et al. 2011),

there is less information available on their frequency.

How often do eyes occur? Where do they occur most

frequently? How does their size vary? This paper seeks

to describe a climatology of the frequency, distribution,

and size of TC eyes.

Vigh et al. (2012) described hurricane eyes based on

20 years (1989–2008) of aircraft reconnaissance flights in

the North Atlantic. They described how often eyes occur

(58% of systems had an eye identified during aircraft

reconnaissance while 61% had an eye identified by in-

frared satellite imagery), when they first form a closed eye

(about 45h after becoming a tropical storm), and their

intensity at first observed eye (mean intensity was 58kt;

1 kt 5 0.5144ms21). Because the effort used aircraft re-

connaissance, they could compare when the eye was first

denoted by aircraft versus infrared (IR) satellite imagery

(about 15h between the first aircraft closed eye and the

first IR eye scene). Also, Cossuth (2014) developed a

large set of eye fixes using the Automated Rotational

Center Hurricane Eye Retrieval (ARCHER) algorithm

(Wimmers and Velden 2010, 2016) and microwave im-

ager data while studying the TC inner-core structure.

However, the use of twice-daily polar orbiter microwave

imagery limits the ability to diagnose certain aspects of

TC eyes (e.g., frequency) in the early years of its avail-

ability (e.g., 1980s). Our work complements Vigh et al.

(2012) and Cossuth (2014) by expanding the analysis in

both time and space with satellite data available on a

regular (3 hourly) basis.

Denotes content that is immediately available upon publica-

tion as open access.

Corresponding author: Kenneth R. Knapp, ken.knapp@noaa.

gov

JULY 2018 KNAP P ET AL . 2089

DOI: 10.1175/MWR-D-17-0343.1

� 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 07:24 PM UTC

mailto:ken.knapp@noaa.gov
mailto:ken.knapp@noaa.gov
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


Herein, an automated algorithm was used to determine

the center of a TC for a temporally and spatially homo-

geneous satellite dataset. The ARCHER algorithm esti-

mates the TC center from the morphological features. It

also provides information on the eye probability, size,

completeness, and more. ARCHER was used to analyze

34 years (1982–2015) of TC imagery from the Hurricane

Satellite (HURSAT) data. The global coverage and long

time series provided an opportunity to investigate the cli-

matology of tropical cyclone eyes.

2. Background and methods

a. HURSAT

The HURSAT dataset was initially developed to

produce a homogeneous analysis of storm intensity

through time (Knapp and Kossin 2007; Kossin et al.

2013, 2007a). It has also been used in development of

TC size climatology (Knaff et al. 2014), objective

intensity estimation (Fetanat et al. 2013; Jaiswal

et al. 2012), evaluation of model reanalyses (Kossin

2015), and studies of cloud clusters (Lacewell

and Homaifar 2015; Zawislak and Zipser 2010).

HURSAT provides geostationary satellite imagery

centered onTCs in the International Best TrackArchive

for Climate Stewardship (IBTrACS) dataset (Knapp

et al. 2011).

HURSAT data provide 3-hourly observations of the

infrared window channel (approximately 11mm), pro-

viding observation of cloud tops and surface skin tem-

peratures (depending on the presence of clouds).

HURSAT imagery is provided at the same spatial scale

through time; all data are subsampled to approximately

8 km. While there have been some improvements in

geostationary IR spatial resolutions (e.g., 8 to 4 km) for

some satellites, the resampling provides a uniform

sampling of storm features.

HURSAT, version 6 (Knapp and Kossin 2017),

provides data from 1979 to 2015, though this analysis

begins in 1982 since that is when the global coverage

of HURSAT is more complete. During this period,

there were 369 330 images that were analyzed; many

scenes of which were simultaneous views from sepa-

rate geostationary satellites. We excluded such du-

plicate observations, so the climatology results from

227 760 individual images.

b. ARCHER

The ARCHER algorithm can (Wimmers and Velden

2016) estimate the center of a tropical cyclone in a sat-

ellite image using visible, infrared, or microwave data.

The ARCHER algorithm was applied to all IR imagery

in HURSAT B1, version 6; ARCHER parameters are

also available in HURSAT. This paper analyzes four of

these parameters:

d eye radius—the radius of the eye,
d eyewall radius—the radius of the eyewall clouds,
d eye completeness—the percent of the eye that the

eyewall encompasses, and
d eye probability—the probability that the scene is

an eye.

Most of these parameters were developed separately

from the Wimmers and Velden (2016) study but have

been monitored over years of operational use in support

of various real-time TC estimation schemes, such as

the advanced Dvorak technique (Olander and Velden

2007). They are constructed as follows. Eye radius re-

sults from ARCHER’s iterative search for the circular

ring that fits the highest average gradient along the TC

image’s eye. Eyewall radius is the radius out from the

ARCHER center fix that contains the pixel with the

lowest brightness temperature, no less than the eye ra-

dius and nomore than the eye radius1 0.38. (This is very
effective at the 85–92-GHz microwave frequencies and

is also useful as a proxy in the infrared.) The eye com-

pleteness is the greater of two numbers: 1) the fraction

that is at least 20K cooler than the warmest pixel in the

eye, or 2) the fraction of the circle associated with the

eyewall radius that is cooler than 232K. The second

option ensures that an eye structure is not discounted in

cases where the eye is heavily obscured.

The eye probability is a probability constructed from

two years of North Atlantic data manually sorted into

‘‘eye’’ and ‘‘no eye’’ cases, and calibrated to a function

of ARCHER’s internal variables ‘‘confidence score’’

and ‘‘ring score.’’ An eye that is partially obscured by

cirrus will normally still register as having a high prob-

ability but the level of probability depends on the

opacity of the cirrus. A TC with a full central dense

overcast will not register a meaningful ARCHER ring

score and will yield a low eye probability. Likewise, the

eye probability depends on the ring score and not some

minimum number of eye pixels, rather how ring-like is

the cloud pattern. This approach provides less dependence

on any changes in image resolution since storm features

are provided at the same 8-km scale throughout the record.

More details are provided byWimmers and Velden (2010,

2016). It should also be noted that this is not the first ap-

plication of ARCHER to HURSAT because Kossin et al.

(2013) used the advanced Dvorak technique, which in-

cludes ARCHER analyses. This, however, is a more

thorough analysis of the aspect of the TCs called ‘‘eye

scenes’’ using ARCHER version 2.

A time series of the eye parameters is provided for

Hurricane Isabel (2003) in Fig. 1. Hurricane Isabel
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developed over theNorthAtlantic on 6 September 2003,

made landfall on the U.S. East Coast on 18 September,

and dissipated as it continued over land on 20 September.

Also, it underwent an eyewall replacement cycle (ERC)

from 12 to 13 September (Bell and Montgomery 2008).

The system had numerous scenes that were a high proba-

bility eye scene, especially during a 5-day span from 11 to

16 September. During that span, the eye remained much

warmer than the eyewall. Also, the eye and eyewall radius

expanded from 20 and 50km, respectively, to 50 and

80km, respectively, coincident with the ERC.

Figure 2 provides some eye scenes from HURSAT as

identified by ARCHER. There are scenes easily iden-

tified as characteristic eye scenes and some that are not.

The Isabel image is from 11 September, prior to the

ERC. Hurricane Allen (1980) has one of the smallest

eyes in HURSAT; the eye and eyewall radii in this scene

are only 10 and 30km, respectively. Conversely, Hurri-

cane Blanca (2015) had one of the largest eye radii in the

record at 80 km. Typhoon Haiyan (2013) had the largest

difference between the maximum eye temperature

(289K) and the eyewall temperature (192K), which

occurred when the system was near maximum intensity

with a minimum central pressure of 895 hPa. These

storms represent the iconic eye scenes: cold circular

clouds surrounding a warm center.

Other scenes, however, represent borderline eyes or

misidentified eyes, demonstrated by the images of

Hurricanes Hector and Daniel. The scene of Hurricane

Hector (2006) on 18 August 2006 meets the minimum cri-

teria for an eye (to be discussed in the next section), with a

probability of 5% and an eye completeness of 100%, and is

likely an eye scene. Conversely, the Hurricane Daniel

(2000) image on 24 July 2000 has the same parameters (5%

probability and 100% completeness) but is not likely an

eye. HURSAT imagery is continuous, so inevitably it

captures scenes at times of transition from noneye to eye

(or vice versa). Given the variations in eye scene ap-

pearance for similar parameters, it is necessary to derive

thresholds for discriminating eye scenes from non-eye

scenes to understand the uncertainty of the climatology.

c. ARCHER eye detection evaluation

The ARCHER algorithm parameters were compared

with results from the Cyclone Center project (www.

cyclonecenter.org), which is a citizen science project

where visitors to the website can provide information on

the interpretation of satellite imagery of historical

tropical cyclones (Hennon et al. 2015). The site uses im-

agery from HURSAT B1. The ability to classify TCs by

scene type using Cyclone Center data and a learning al-

gorithm was analyzed by Knapp et al. (2016), where they

found that the determination of the eye scene has aHeidke

skill score of 0.87. Therefore, we use the Cyclone Center

data to compare its classification of scene type (eye vs

no eye) with ARCHER. In addition to ARCHER eye

FIG. 1. Time series of ARCHER parameters for Hurricane Isabel (2003): (top) eye probability and eyewall

completeness, (middle) eye and eyewall radius, and (bottom) the maximum satellite brightness temperature in the

eye and eyewall. Solid lines denote when the storm likely had an eye, with dashed lines when it did not. Gray areas

on 13 and 16 Sep 2003 represent eyewall replacement and landfall, respectively.
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probability, the ARCHER eye completeness value was

investigated to determine if it helped identify eye scenes.

Thresholds for both parameters were varied such that

scenes exceeding both thresholds were considered eye

scenes; the resulting skill scores when compared to the

Cyclone Center algorithm are shown in Fig. 3. When

ARCHER eye probability is greater than 50%, the skill

scores decrease as probability increases with little de-

pendence on eye completeness. This results from the in-

creased number of missed eyes when setting the eye

probability threshold too high. At eye probabilities below

50%, there is a dependence on eye completeness, with

more complete eyes aligning more closely with Cyclone

Center classifications. Themaximum skill score identified is

0.75, when assigning a scene as an eye when eye

probability is greater than 5% and eye completeness is

greater than 95%. The resulting performance of this

threshold classification model is provided in Table 1 for

17 616 scenes.

The ARCHER and Cyclone Center algorithms agree

on 95% of the classifications: 86% that are not eye and

9% that are eye scenes. The total eye fraction was sim-

ilar for both algorithms, with ARCHER classifying

11.7% as eye scenes compared to 11.1% from the

Cyclone Center. There was disagreement on only 5% of

image scenes.

d. Indian Ocean coverage gap

The source satellite data for HURSAT are ISCCP-B1

(Knapp 2008). The geostationary satellite data available

FIG. 2. Eye image samples from HURSAT as identified by ARCHER where the plus (1) sign is the image center (from interpolated

best track), the crisscross (3) is the circulation center from ARCHER, the white circle is the extent of the eye, and the gray circle is the

eyewall. The scale of each image is the same: 555 km (i.e., 58 latitude).

FIG. 3. Skill score as a function of eye probability and completeness

thresholds for determining eye scenes.
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to ISCCP did not include any geostationary observa-

tions over the Indian Ocean until 1998. Prior to that, the

views of that region were at-large view zenith angles

(VZA), demonstrated in Fig. 4. The Gridded Satellite

(GridSat; Knapp et al. 2011) image from 10 March 1994

over the south Indian Ocean shows the limits of the

satellite coverage in this area. The gap (white region) at

708E is a region not visible from the geostationary sat-

ellites at 08 and 1408E. Intense Tropical Cyclone Litanne
(1994) can be seen near the image seam at 708E. The
close-up image of Litanne shows that in spite of a 748
VZA, an eye is still apparent. This is not the case for all

cyclones in this region, particularly for smaller eyes.

We can investigate the impact of these higher view

zenith angles because the European Meteorological

Satellite-5 (Meteosat-5) was moved to the Indian Ocean

data coverage (IODC) position at 638E in 1998. We

provide statistics of the numbers of eye scenes in the

south Indian and north Indian basins with and without

the IODC in Table 2, where an eye storm is defined as a

TC with at least one eye scene. Both the mean number

of eye scenes in an eye storm and the maximum number

of eye scenes in a storm decrease without IODC in both

basins. Thus, when there is no satellite in IODC, fewer

eye scenes were identified. However, the fraction of eye

storms (the fraction of storms with at least one eye

scene) does not likewise decrease but increases in the

northern Indian basin and decreases in the southern

Indian basin. Thus, the known impact of adding IODC

in 1998 on a global eye climatology is a small increase in

eye scenes, while the impact on the number of observed

eye storms is unclear because of different responses

(positive and negative) in the two basins.

e. Caveats

It should be noted that there are some limitations with

this climatology that should be considered when inter-

preting the results. The ARCHER algorithm has his-

torically been applied to 4-km IR data but is used with

8-km data here. Therefore, there will be some missed

eye scenes in this climatology for storms with very small

eyes. Also, the climatology is limited to the HURSAT

period of record, which spans 1982–2015 for this study.

The eye scenes are flagged objectively with a skill

score of 0.75. Thus while good, it is not perfect and there

will be times when an eye is missed or a scene is mis-

labeled as an eye. Furthermore, while many scenes are

eye or not eye scenes, there are some scenes where it just

is not apparent (cf. Fig. 2). Based on Table 1, there is

agreement on about 95% of all scenes.

This climatology uses IR imagery only. A significant

advantage of the B1 data is their consistent 3-hourly

observations for nearly all TCs. However, microwave

imagery can identify eye scenes earlier in a storm’s

lifetime or when an eye is obscured by cirrus (Cossuth

2014; Velden et al. 2006; Vigh et al. 2012). Microwave

observations come at the sacrifice of temporal coverage

(starts in 1989) and resolution (only twice daily in the

early years). Thus, it should be understood that some of

the statistics discussed below (e.g., time of formation of

FIG. 4. (left)GridSat image of the southern IndianOcean from 10Mar 1994 and (right) close up of Tropical Cyclone

Litanne (1994) (box in plot on left), using the same color scale as Fig. 2.

TABLE 1. Performance of the scene classification model from

ARCHER parameters compared to the scene classification from

Cyclone Center (CC).

ARCHER 5 eye ARCHER 5 not eye

CC 5 eye 1564 385

CC 5 not eye 503 15 164
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first eye scene) would be different were microwave

analysis combined with this IR dataset.

Last, there is limited coverage of the Indian Ocean

during the early portion of the record (1982–97). From

the analysis above, the impact is more noticeable on the

number of eye scenes in a storm with less impact on

determining the presence of an eye for a given storm.

3. Eye climatology

Figure 5 shows the distribution of TC maximum wind

speeds for all TC scenes separated by eye versus non-eye

scenes (using 1-min maximum sustained winds from

IBTrACS). The median wind speed for eye and non-eye

scenes is 97 and 35kt, respectively. Based on Dvorak

(1984), TCs with eyes generally have winds at 65 kt or

higher. This can be seen in the figure, where the eye

frequency increases sharply at the 50–70-kt range. At

100 kt, the eye scenes become more frequent than non-

eyes. Thus, a storm with winds greater than 100 kt are

the most likely to have an eye scene and the fraction

reaches 100% at 160kt though the number of storms at

this intensity are few (the large decrease at 170 kt is

caused by the few storms sampled, there are only 3

storms at this intensity).

The following sections analyze the frequency and spatial

distribution of TC eyes. Also, given the average intensity of

eye storms, it is important to understand any possible tem-

poral changes in the eye scene frequency or spatial distri-

bution that may be detectable with this data, since any such

changes would have significant impact on local populations.

a. Eye scene frequency

The images labeled as eye scenes compose 12.6% of all

HURSAT imagery.Ona per stormbasis, 51%of all storms

had at least one eye scene, hereafter called eye storms.

There seem to be some marginal eye storms since those

with exactly one eye scene account for 13% of all storms,

meaning 38% of cyclones have two or more eye scenes.

The average eye storm has 10 eye scenes over its life

cycle, which is just over a day (given 3-hourly data). The

distribution has a large tail; the 75th and 95th percentiles

for number of eye scenes is 16 and 36, respectively, and

storms exist that go far beyond the 95th percentile.

Table 3 lists the 10 storms with the most eye scenes. We

have also included the Southern Hemisphere storm with

the most eye scenes for perspective. Hurricane Ioke

(2006) stands out from the rest with 98 eye scenes—

a cumulative 12 days as an eye storm. The difference in

number of eye scenes from Ioke to Isabel (i.e., first to

second) is as large as the span from second to 30th.

These top 10 storms occur in the North Atlantic and

North Pacific (both eastern and western).

The time series of eye scene and eye storm fraction are

provided in Fig. 6. Neither series has a statistically

TABLE 2. Eye scene statistics with and without Indian Ocean data coverage (IODC) for 1999–2015.

North Indian Ocean South Indian Ocean

IODC Without IODC IODC Without IODC

Eye scene fraction 2.4% 1.8% 3.0% 1.9%

Eye storm fraction 19.3% 21.2% 22.2% 18.6%

Mean No. of eye scenes 4.6 3.1 7.3 6.7

Max No. of eye scenes 30 19 49 31

FIG. 5. (top) Histogram of 1-min maximum sustained wind

speeds for scenes without an eye (black) and with an eye (magenta)

along with the fraction of storms with detectable eyes at each wind

speed (cyan). (bottom) Distribution of TC wind speeds for ana-

lyzed HURSAT images.
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significant trend from 1982 to 2015, so it appears that the

frequency of eye scenes or storms is not changing. Also,

the two time series are not well correlated (R2 5 0.21).

The year with the most eye scenes (2015 with 18.5%)

does not correspond to the year with themost eye storms

(1992 when 62% of storms had eyes).

The frequency of eye scenes during a storm’s lifetime is

plotted in Fig. 7. Eye scenes are most numerous just after

the fifth day of a storm’s existence. While the number of

eyes approach zero after day 15, the decrease in the frac-

tion of storms is abated because there are few storms with

long lifetimes. So after a storm’s 10th day, there is

roughly a 1 in 10 chance that the current scene has an eye.

The tail disappears when normalizing time to the life of the

system. In Fig. 8, the eyes are numbered relative to their

position between the first and last observation point of a

storm. In this case, 50% of the eye scenes occur between

0.38 and 0.64. In fact, 80% of all eyes scenes occur during

the middle half (from 0.25 to 0.75) of a storm’s lifetime.

For eye storms, the eye first appears within the first

6.6 days of tracking the system (regardless of initial in-

tensity) for 90% of the systems. The time from when the

storm first reaches 34 kt to the first eye is less than

4.25 days for 90%of the storms and 50%of systems have

their first IR eye within 2 days of being named. Thus, the

value of roughly 45 h (or 2 days) from naming a North

Atlantic system to the first eye observed with aircraft by

Vigh et al. (2012) is consistent with the global value

found here with satellites.

b. Eye scene spatial distribution

Figure 9 shows the spatial distribution of tropical cy-

clones in this study and the fraction of which have eye

scenes (data are binned in 58 boxes and eye storm frac-

tion is only shown when there are more than 100 scenes

per box). Eye scenes are most frequent in the western

Pacific (WP), specifically in a large region between

Japan and the Philippine Islands, where 37% of the

scenes are eye storms.While the highest density of storms

is in the eastern Pacific (EP), the percentage of eye sys-

tems is not as profound, with values near 18%. Over the

North Atlantic (NA), eye scenes are most frequent in the

open North Atlantic (with a maximum near 28%), values

are lower closer to theUnited States and themaximum in

the Gulf ofMexico only reaches 17%. Eyes are much less

frequent in the Southern Hemisphere, which is consistent

with Table 3. Themaximum in the south Indian basin (SI)

occurs between La Reunion Island and Madagascar

(16%) and the maximum southeast of Samoa in the

South Pacific (SP) is only 15%.

The summary of eye frequency for each basin is pro-

vided in Table 4. In terms of the fraction of all scenes,

there are three basins above average (western Pacific,

eastern Pacific, and North Atlantic). Conversely, the

north Indian (NI) and the Southern Hemisphere basins

were below the global average of 12.6% of scenes. For

the eye storm fraction, while the western and eastern

Pacific are still above average, the North Atlantic is near

the minimum (41%). Thus, with a large fraction of eye

scenes spread across proportionately fewer storms, the

mean number of eye scenes in an eye storm is near the

maximum in the North Atlantic (12.6 per storm). Only

by a small margin does the prolific western Pacific have

more eye scenes per storm (12.8) than the North

Atlantic. The rest of the basins are below average in

terms of mean number of eye scenes. The most eye

scenes in a storm for a given basin vary from 30 in the

north Indian to 98 forHurricane Ioke. It should be noted

TABLE 3. The 10 storms with themost eye scenes from 1982 to 2015

along with the top storm from the Southern Hemisphere.

Rank No. Name Year Basin(s)

1 98 Ioke 2006 EP, WP

2 73 Isabel 2003 NA

2 73 Luis 1995 NA

4 72 John 1994 EP, WP

5 70 Ivan 2004 NA

6 69 Trudy 1990 EP

7 67 Seth 1991 WP

8 63 Fengshen 2002 WP

9 62 Gert 1999 NA

9 62 Kevin 1991 EP

31 49 Kalunde 2003 SI

FIG. 6. Annual time series of fraction of HURSAT images identi-

fied as (top) eye scenes and (bottom) eye storms.
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that the 98 eye scenes were split between the eastern and

western Pacific (with 36 and 62 eye scenes, respectively).

In addition to the general distribution of eye scenes,

the 34 years of data provide the ability to look at po-

tential changes in the location of the eye scenes.

Figure 10 provides the quantile regression of the loca-

tion of eye scenes. The location of the first occurrence of

an eye remains relatively unchanged through time.

However, the location of all eyes is shifting poleward.

The overall rate is approximately 0.0458 latitudeyr21. Sep-

arating the analysis by hemisphere (not shown) produces

expansion rates of 0.058 and 0.0258 latitudeyr21 in the

Northern and Southern Hemisphere, respectively. So it

appears the combined expansion away from the pole is

roughly 80kmdecade21. The rate appears to be higher for

eyes occurring near the edge of the tropics (around 238).
The location of the last eye scene of a system is alsomoving

poleward. The overall linear regression is significant at p5
0.05 with the largest contribution coming from eyes just

outside the tropics (between 228 and 288). This is consistent
withKossin et al. (2014),whofind that the locationof aTC’s

lifetime maximum intensity (LMI) is expanding poleward

at a slightly larger rate (;118km decade21). However, the

trend of poleward expansion in Fig. 10 derives from ob-

jectively identified eye scenes rather than position of max-

imum storm intensity. In summary, there appears to be an

expansion of the region of the tropics that are prone to eye

storms, which is consistent with a previous study, with the

equatorward boundary remaining somewhat stationary and

the poleward boundary moving poleward.

c. Eye size

Kossin et al. (2007b) find a correlation between eye

radius and radius of maximum winds. Thus, the eye size

data in HURSAT can help estimate hurricane wind

structure where few measurements exist globally. The

FIG. 7. (top) Number of eye scenes and (bottom) fraction of storms that have eyes as a function

of storm lifetime (in days since first best track position).

FIG. 8. Number of eye scenes as a function of storm lifetime

[normalized from first reported position (T 5 0) to last reported

position (T 5 1)].
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histograms of eye and eyewall size are shown in Fig. 11.

The mean eye radius is 26 km, with a 75th and 90th

percentiles at 28 and 50km, respectively. The detection

limit of the ARCHER algorithm using HURSAT data

appears to be about 10 km. This is consistent with the

HURSAT pixel size of about 8 km.

Eye size does vary spatially (as shown in Table 5). The

Southern Hemisphere, while having far fewer eye

scenes, has larger eyes. The mean eye radii for the south

Indian and South Pacific are 34 and 37km, respectively,

both of which are larger than the global average. The

eastern Pacific is the basin with the smallest average eye

size (22 km). In the Northern Hemisphere, the western

Pacific has the largest mean eye size (though only mar-

ginally larger than the north Indian). The distribution of

eyewall radius is also provided in Fig. 11. The mean

eyewall size is 54 km. The eyewall sizes appear to be

proportional to the eye size (not shown), with the same

rank ordering of basin sizes.

4. Eye scenes and annual TC activity

The global annual TC activity is measured in various

ways: numbers of storms, accumulated cyclone energy

(ACE), potential destruction index (PDI), and more.

Many of these measures are dependent on various

practices (e.g., timing of the naming of a storm) and

conventions (e.g., wind speed averaging periods), both

of which can affect annual statistics and trends. A

measure of TC activity is needed that does not depend

so much on human estimates of intensity or strength,

which have changed over time (Knapp and Kruk 2010)

and can produce conflicting results (Emanuel 2005; Wu

et al. 2006). The following investigates the relationship

FIG. 9. (top) Number of storm scenes in each 58 box. (bottom) Percent of scenes that are eyes

(only showing percentages when number of scenes per box exceeds 100).

TABLE 4. Statistics of eye scenes globally and by basin.

Global NI WP EP NA SI SP

Eye scenes (%) 12.6 10.1 20.4 16.4 16.0 6.5 6.8

Eye storms (%) 51 46 66 52 41 43 40

Eye scene counts—mean 10.6 3.8 12.8 9.4 12.6 8.0 7.7

Eye scene counts—max 98 30 67 69 73 49 40
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between occurrence of HURSAT eye scenes and two

measures of activity: number of hurricane-strength TCs

and number of hurricane-strength TC days. While the

term hurricane is often related to TCs occurring in the

Western Hemisphere, here the term is used to describe

the strength of wind (e.g., hurricane-force winds).

a. A proxy for number of hurricane-strength TCs

One temporalmeasure of stormactivity is the number of

TCs that reach a given intensity. For example, the number

of named storms canbe counted as the number of TCswith

1-min maximum sustained wind speeds, W, greater than

34kt. Likewise, the number of hurricanes (W. 64kt) and

major hurricanes (W . 95kt) are used by Diamond and

Schreck (2017). Similarly, a minimum threshold on the

number of eye scenes for a TC can be used to count TC

activity. By varying the intensity threshold and eye scene

limit, one can determine an optimal set that maximizes the

correlation between number of TCs based on intensity and

number based on eye scenes. The optimal thresholds

showed high correlation (R 5 0.81) between storms with

lifetime maximum intensity greater than 70kt and having

at least two eye scenes. Thus, it is possible to construct

annual counts of ‘‘proxy hurricane-strength TCs’’ that are

consistent between basins and through time.

b. A proxy for hurricane-strength TC days

The metric ‘‘hurricane days’’ is the sum of all occur-

rences of storms with an intensity of hurricane strength

or greater (using 1-min winds) for global storm activity.

It represents a measure of the activity by integrating the

occurrences of strong TCs (Klotzbach 2011). This con-

cept can be adapted globally as hurricane-strength TC

(HSTC) days. The relationship betweenHSTC days and

number of annual eyes is provided in Fig. 12, where the

correlation coefficient is 0.84. It appears that the annual

number of eyes can be a proxy for HSTC days.

The time series of the error of the proxy hurricane

days (Fig. 12) shows two regimes of error: large errors

FIG. 10. Quantile regression of latitude of the first occurrence of (left) an eye, (middle) all eye scenes, and (right) last eye scene for each

storm. The numbers on the top of the plots show the percentile values (in 8 latitude), red line is the linear regression trend along with the

p 5 0.05 uncertainty (dashed red), and the shaded region denotes the p 5 0.05 uncertainty for the quantile regression.

FIG. 11. Histograms of (top) eye radius and (bottom)

eyewall radius.
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before 1998 and smaller errors after. The analysis was

repeated using only the uniform views (i.e., ignoring

satellites in the IODC) and the result is the same:

a larger variation in proxy error before 1998. The errors

do not seem to derive from a new satellite position over

the Indian Ocean. It is not clear if the change in error

characteristics results from differences in the eye scene

or if there are biases in the global best track data record.

HSTC daysmay bemore temporally consistent from eye

data than when derived from the best track record.

5. Summary

An established algorithm for identifying centers of

tropical cyclones—and in particular, the characteristics

related to eyes—is applied to a long-term, homogenous

satellite dataset of infrared imagery. One result of this

application is a more complete climatology of TCs that

form an eye. While previous work focused on aircraft

and satellite observations in the North Atlantic and

microwave imagery, this approach is global and more

routinely observes the system (satellite imagery were

available at 3-h intervals).

The primary results include the following:

d 12.6% of all infrared TC image scenes are identified as

eye scenes.
d 51% of all TCs from 1982 to 2015 had at least one

eye scene.
d The median wind speed for TCs with an eye scene was

97kt versus 35 kt for noneye scenes.
d The average eye storm spent 30 h (10 scenes) as an eye

but many storms have more eyes, with Hurricane Ioke

having by far the most eye scenes: 98 (more than

12 days with an eye).
d Eye scenes are most numerous just after the fifth day

of a storm’s existence.
d The time fromwhen the storm first reaches 34 kt to the

first eye is less than 4.25 days for 90% of the storms

and 50% of systems have their first IR eye within

2 days of being named, which is consistent with

regional studies using aircraft data.
d Eye scenes are much more numerous in the Northern

Hemisphere, with a region in the western Pacific being

the most prolific (where 37% of the scenes are

eye scenes).
d The zonal region that is prone to experiencing eye

storms is expanding poleward.
d The mean eye radius is 26 km and, on average, eye

sizes in the Southern Hemisphere are larger than the

Northern Hemisphere.
d Annual numbers of eye storms and eye scenes can be

used as proxies for number of hurricane-strength TCs

and hurricane-strength TC days, respectively.

TABLE 5. Statistics of eye and eyewall radii (km) globally and by basin.

Global NI WP EP NA SI SP

Eye size—mean 26.3 25.2 25.4 22.5 23.3 34.5 37.3

Eye size—standard deviation 16.7 16.5 15.3 13.8 13.3 21.1 23.0

Percent of eyes larger than 35 km 20 19 18 12 13 37 43

Eyewall size—mean 54.1 53.1 54.7 49.9 51.1 62.2 64.1

Eyewall size—standard deviation 17.6 16.7 16.9 15.7 15.3 19.8 21.8

FIG. 12. (top) Global hurricane days vs annual number of eye

scenes, linear regression information is provided in the legend.

(bottom) Linear regression error vs time.
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d The number of hurricane-strength TC days shows large

variation in early years (1982–97) suggesting some tem-

poral inhomogeneities, at least in relationship to the

number of eye scenes.

While this effort has some limitations, it represents a

thorough analysis of 34 years of tropical cyclones. Further

improvements could bemade by incorporatingmicrowave

(MW) data andAVHRRdata, and producing a consensus

eye product that incorporates all satellite data. Also, much

more can be done with theARCHERandHURSAT data

stored together to better understand relationships between

storm morphology, structure, and intensity.
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